Abstract
We analyze the long-term evolution of a continuous trait subject to frequency-dependent disruptive selection, and controlled by a single diploid, additive locus. Our simple selection model is a mathematical approximation to many complex systems of ecological interactions resulting in disruptive selection, like, for example, scramble competition and habitat heterogeneity. A polymorphism of two specific alleles at equal frequencies is the unique long-term equilibrium, or ESS, of this system. We then study the evolution of direct assortative mating for the selected trait, through mutations of small effect at modifier loci controlling the degree of assortment. The mating process is described by a model that allows for possible costs of assortment. Unless the cost of assortment is too high, strength of assortment always increases in populations where mating is random or weakly assortative, and also in populations that already practice very strong assortative mating. However, even if it has no cost, assortment can increase continuously from random mating to complete isolation, resulting in sympatric speciation, only if selection is sufficiently strong. In fact, only a modest degree of assortment, corresponding to a continuously stable ESS, can be attained from random mating, when selection intensity is below a certain threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.