Abstract
The weigh-in-motion (WIM) system and the structural health monitoring (SHM) system have been used as two separate modules playing different roles in bridge operation and providing different information for bridge maintenance. This study proposes a novel bridge safety condition assessment method that utilizes long-term monitoring data from the WIM system and the SHM system. The method uses the slope of the established vehicle load and vehicle-induced strain mapping model as the evaluation indicator for bridge condition assessment and early warning by clustering and Bayesian linear regression. The proposed method is verified with the continuous monitoring data of a concrete box girder bridge. The results show that the slope indicator of the mapping model changes with the variation of bridge performance, which is stable and can reflect the bridge state in time. The evaluation method can integrate the WIM system with the SHM system and evaluate the bridge health condition based on the correspondence between the two systems, which can make full use of the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.