Abstract

Long-term blockade of nitric oxide synthesis with N(omega)-nitro-L-arginine methyl ester (L-NAME) induces cardiac perivascular fibrosis in rats. Its relationship to expression of angiogenic growth factors and capillary network remodeling is not understood. This study was designed to determine whether capillary proliferation and angiogenic growth factor regulation occur in response to L-NAME. Three groups of rats were studied: C, control; L1, L-NAME 13 mg/kg/day; L2, 130 mg/kg/day. One and eight weeks later the hearts were removed and subjected to morphometric analysis and analysis of gene expressions of molecules related to angiogenesis. Arterial hypertension was observed within 8 weeks in the L1 and L2 groups compared with control. After 1 week immunohistochemical assays demonstrated basic fibroblast growth factor (bFGF) in the arteriolar media. Northern blot analysis revealed increase in bFGF and transforming growth factor-beta (TGF-beta) mRNA during this period. At 8 weeks arteriolar medial thickening and perivascular fibrosis were seen microscopically in the L1 and L2 groups, which were accompanied by only a modest remodeling of capillary network due to increase in venular or intermediate capillary portions. Concomitantly immunoreactivity for vascular endothelial growth factor (VEGF) and TGF-beta were detected in perivascular area. These results suggest that (1) blockade of NO synthesis induces expression of angiogenic growth factors as well as vessel wall remodeling, and (2) TGF-beta may counteract angiogenic growth factors and limit subsequent alterations in capillary network remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.