Abstract

This paper aims to employ a 2D thermo-mechanical multi-scale ASR model for the analysis of a concrete gravity dam in Western Switzerland. Simulation results are compared to the field measurements and observations. Analysis of the results reveals negligible effect of temperature variation on the ASR advancement. The difference in length between the upstream and the downstream faces is identified as the main source for the upstream drift at the level of the crest. Study of the structural effects reveals ASR-related expansion anisotropy and cracks alignment being more pronounced along the upstream part and the foundation. If the former is explained by the transmission of the self-weight, the latter is attributed to the constraining effect of the underlying rock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call