Abstract

Fabric-reinforced cementitious matrix (FRCM) composites, comprising high-strength fiber textiles embedded within inorganic matrices, represent an effective, cost-efficient, and low-invasive solution for strengthening and retrofitting existing masonry and reinforced concrete structures. Among different textiles employed in FRCM composites, polyparaphenylene benzo-bisoxazole (PBO) textiles are adopted due to their high tensile strength and good adhesion with the matrix. Although several experimental, numerical, and analytical works were performed to investigate the mechanical properties of PBO FRCM composites, limited information is available on their long-term behavior, as well as in the case of exposure to aggressive environments. This paper presents and discusses the results of a wide experimental campaign aimed at investigating the effect of different environmental conditions on the long-term tensile behavior of a PBO FRCM composite. Tests are performed using a clamping-grip tensile test set-up. The effect of various aggressive environments on the composite matrix cracking stress, composite tensile strength, ultimate strain, and fully cracked stage slope is investigated by comparing the results of nominally equal conditioned and unconditioned (control) specimens. These results are also compared with those of other FRCM composites comprising glass and carbon textiles subjected to the same conditionings, collected from the literature. The results show only limited reductions in the tensile properties, even after long exposure to aggressive environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call