Abstract

We have used neutron monitor data covering a wide range of energy over a period of 22 years (1966–1987), as well as sea-level multidirectional meson telescope data from Nagoya to examine the latitude effect of solar diurnal vectors and its dependence on the polarity of interplanetary magnetic field (IMF). By sorting the daily cosmic-ray data according to whether the IMF is toward (T) or away (A) from the Sun, the annual mean solar diurnal variations (amplitude and phase) for the T and A days were determined separately. Results showed a northward-pointing latitudinal gradient from neutron monitors of the most northerly latitudes, and a predominant southward gradient at high southerly latitudes. The resultant latitudinal cosmic-ray gradients are the sum of two gradients: a north-south symmetry gradient (occurring in minimum and maximum solar activity years), and a north-south asymmetry gradient (occurring during different phases of solar activity cycles). The difference vector (T - A) between the solar diurnal vector for two groups was calculated, which represents a good indicator for the resultant perpendicular gradient relative to the Earth. This difference vector shows a considerable change in phase for detectors located in the northern hemisphere of the Earth. On the other hand, there exists much less change in phase for detectors located in the southern hemisphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call