Abstract

BackgroundProgressive cerebellar ataxia is a neurodegenerative disorder without effective treatment options that seriously hinders quality of life. Previously, transcranial direct current stimulation (tDCS) has been demonstrated to benefit cerebellar functions (including improved motor control, learning and emotional processing) in healthy individuals and patients with neurological disorders. While tDCS is an emerging therapy, multiple daily sessions are needed for optimal clinical benefit. This case study tests the symptomatic benefit of remotely supervised tDCS (RS-tDCS) for a patient with cerebellar ataxia.MethodsWe report a case of a 71-year-old female patient with progressive cerebellar ataxia, who presented with unsteady gait and balance impairment, treated with tDCS. tDCS was administered using our RS-tDCS protocol and was completed daily in the patient’s home (Monday – Friday) with the help of a trained study technician. tDCS was paired with 20 min of simultaneous cognitive training, followed by 20 min of physical exercises directed by a physical therapist. Stimulation consisted of 20 min of 2.5 mA direct current targeting the cerebellum via an anodal electrode and a cathodal electrode placed over the right shoulder. The patient completed baseline and treatment end visits with neurological, cognitive, and motor (Lafayette Grooved Pegboard Test, 25 ft walk test and Timed Up and Go Test) assessments.ResultsThe patient successfully completed sixty tDCS sessions, 59 of which were administered remotely at the patient’s home with the use of real time supervision as enabled by video conferencing. Mild improvement was observed in the patient’s gait with a 7% improvement in walking speed, which she completed without a walking-aid at treatment end, which was in stark contrast to her baseline assessment. Improvements were also achieved in manual dexterity, with an increase in pegboard scores bilaterally compared to baseline.ConclusionsResults from this case report suggest that consecutively administered tDCS treatments paired with cognitive and physical exercise hold promise for improving balance, gait, and manual dexterity in patients with progressive ataxia. Remotely supervised tDCS provides home access to enable the administration over an extended period. Further controlled study in a large group of those with cerebellar ataxia is needed to replicate these findings.Trial registrationClinicalTrials.gov Identifier: NCT03049969. Registered 10 February 2017- Retrospectively registered.

Highlights

  • Progressive cerebellar ataxia is a neurodegenerative disorder without effective treatment options that seriously hinders quality of life

  • Progressive cerebellar ataxias are the result of diverse disease processes that can be genetic or acquired [1, 2]

  • We have developed and extensively validated a remotely supervised or RS-transcranial direct current stimulation (tDCS) protocol for patients to self-administer tDCS in their homes while being monitored in real-time via video conferencing [11, 19,20,21,22,23,24,25,26,27,28]

Read more

Summary

Introduction

Progressive cerebellar ataxia is a neurodegenerative disorder without effective treatment options that seriously hinders quality of life. Among the wide spectrum of motor signs, ataxic gait is the most relevant and it is characterized by unsteadiness, increased step width, reduced step length, slow walking speed, variable foot placement and irregular foot trajectories [1, 4]. Such unsteady movements and variable gait patterns may be caused by deficits either in dynamic inter- and intralimb coordination or in balance control [1]. The symptom burden can negatively impact mood, productivity, and quality of life in patients

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call