Abstract

A particulate matter (PM) control device known as aspiration efficiency reducer (AER) has been developed as an attachment to the fresh air intake in building ventilation systems to reduce building energy consumption and improve the fresh air intake’s quality. Ambient particle laden air is drawn into the fresh air inlet of a mechanically ventilated building via the air handling unit (AHU). The ventilation system particle filters become loaded and clogged with PM, increasing the load on the fan’s motor. Three novel AER devices were tested against an AHU inlet rainhood, and their long-term energy performance assessed. Furthermore, an AER attached to an AHU incorporating single-stage filtration (SSF) was compared against an AHU fitted with rainhoods employing two-stage filtration (TSF). The findings showed AER technology resulted in a 6.6–11.4 % reduction in the AHU’s energy consumption. Finally, the impact of the AER with SSF compared to a rainhood with TSF led to a lowering of the system pressure throughout the entire testing period, reduced filter and labour costs resulting in a 36.5 % reduction in the total costs. AER technology and a ventilation filtration system design tailored to the local environment will result in lower building energy consumption and CO2 emissions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call