Abstract

After dredging of contaminated sediment, additional remediation technique is required before its final disposal. For this purpose, this research was based on the long-term stabilization/solidification (S/S) process of highly contaminated sediment (dominantly by heavy metals) from a European environmental hot spot, the Great Bačka Canal. Due to optimisation of remediation techniques, this sediment is treated with selected immobilization agents: kaolinite, quicklime and Portland cement. The use of pseudo-total metal content (selected priority substances: Cr, Ni, Cu, Cd, Zn, Pb and As) in untreated sediment, determined that sediment urgently requires remediation. Short-term (after 7 and 28 days) and long-term (after 7 years) monitoring were done in order to estimate the concentrations of metals and effect on biota from S/S mixtures during this processes.The environmental risk assessment encompassed the application of several appropriate analytical methods: the pseudo-total metal content, the German standard leaching test - DIN 3841-4 S4 and Toxicity Characteristic Leaching Procedure - TCLP test leaching tests and sequential extraction procedure (BCR) on S/S mixtures, testing the aging process and toxicity effects. After simulating real environmental conditions using all tests in all three mixtures, metals do not exceed the prescribed limit values and as such S/S mixtures are classified as non-hazardous waste. Sequential extraction procedure showed that the highest percentage of metals are in the residual phase, bound to silicates and crystalline structure. After 7 years of S/S mixture aging, kaolinite showed the highest binding capacity that was reflected in the content of metals in the residual phase (34.8% of Ni to 77.6% of Cr). DIN and TCLP leaching tests confirmed that the exchangeable phase has a minor effect on the environment. Accordingly, this remediation technology could be well applied for final disposal of this and similar extremely contaminated sediment dominantly with inorganic pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.