Abstract

While the application of manure to improve soil quality has attracted attention, the effect of pig manure application rates on soil acidity remains poorly understood. In this study, we analyzed the changes and correlations between soil acidity, pH buffer capacity (pHBC), soil chemical properties, and crop yields after 8 years of pig manure application at different rates (i.e., 0, 7.5, 15, 30, and 45 Mg ha−1) in a red upland soil (Ultisol). With an increase in the application rates, the crop yields were 0.77–8.85 times higher; the pH was enhanced by 0.4–0.8 units; and the soil organic matter (SOM), pHBC, iron activation (Feo), exchangeable calcium (ExCa), and exchangeable magnesium (ExMg) contents increased by up to 74.1%, 92.7%, 36.7%, 62.2%, and 48.7%, respectively, whereas that of total exchangeable acid (ExAcid) decreased by 17.2–52.9%. The crop yields were positively related to the soil pH but negatively correlated with ExAcid. Redundancy analysis revealed ExAcid and pHBC were more sensitive than pH was to the other chemical indicators. ExAcid was negatively correlated with SOM and ExCa; pHBC was positively correlated with ExMg, TN, SOM, and Feo. In conclusion, the crop yield could be improved by adjusting the soil acidity characteristics, and the application of pig manure reduced the soil acidity, with an optimal application rate of 15 Mg·ha−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call