Abstract
Largest portion of the bridge stock in almost any country and bridge owning organisation consists on ordinary bridges that has short or medium spans and are now deteriorating due to aging, etc. Therefore, it is becoming an important social concern to develop and put to practical use simple and efficient health monitoring systems for existing short and medium span (10 - 30 m) bridges. In this paper, one practical solution to the problem for condition assessment of short and medium span bridges was discussed. A vehicle-based measurement with a public bus as part of a public transit system (called “Bus monitoring system”) has been developed to be capable of detecting damage that may affect the structural safety of a bridge from long term vibration measurement data collected while the vehicle (bus) crossed the target bridges. This paper systematically describes how the system has been developed. The bus monitoring system aims to detect the transition from the damage acceleration period, in which the structural safety of an aged bridge declines sharply, to the deterioration period by continually monitoring the bridge of interest. To evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. The verification results thus obtained are also described in this paper. This study also evaluates the sensitivity of “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. As the results, it will be able to make a rational long-term health monitoring system for existing short and mediumspan bridges, and then the system helps bridge administrators to establish the rational maintenance strategies.
Highlights
As an example, many of the bridges in Japan were constructed during the years of rapid economic growth
An effective way to achieve this goal is to develop and put to practical use a bridge management system (BMS) mainly for making engineering judgments based on periodic close-range visual inspection data or a structural health monitoring (SHM) system aiming to detect anomalies objectively by use of continuous monitoring data obtained from various sensors
The goal of conversion by use of correlation coefficients was not achieved because the required amount of data was not available, the study succeeded in showing that the variability of characteristic deflection can be reduced by applying the moving average method to a time series
Summary
Many of the bridges in Japan were constructed during the years of rapid economic growth. An effective way to achieve this goal is to develop and put to practical use a bridge management system (BMS) mainly for making engineering judgments based on periodic close-range visual inspection data or a structural health monitoring (SHM) system aiming to detect anomalies objectively by use of continuous monitoring data obtained from various sensors. These approaches, are being made increasingly difficult by emerging problems such as the shortage of technical experts and cost increase. That a simple-to-use, efficient bridge monitoring system is developed for short and medium span bridges that will shortly enter the deterioration period in the coming years
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.