Abstract

Twenty-four hours of N(2) induced anoxia induced global perturbations on protein expression in rainbow trout hypodermal fibroblasts cell line. Anoxia was obtained by depleting the medium of O(2) by flushing with N(2), and protein changes were studied by 2-DE coupled with MS providing quantitative measurements of a large number of proteins in one single study. The anoxic insult changed the level of 33 protein spots: 22 of these were up-regulated compared to the control situation and 11 were down-regulated. Using MS/MS sequencing 19 of the 33 protein spots that changed were identified, corresponding to a success rate of more than 50%. The identified proteins included two proteins involved in energy metabolism namely phosphoglycerate mutase and isocitrate dehydrogenase. In addition we observed the up-regulation of a cluster of proteins that contribute to cytoskeleton function. These are calpain, EB1, and Rho GDP dissociation inhibitor (GDI). The up-regulation of Rho GDI was shown to develop in a time dependent manner with no significant increase for up to 8 h of anoxia. In conclusion, this study provides a thorough investigation of the effect of anoxia in a cell line from rainbow trout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call