Abstract
In this paper we review the trajectory of a model proposed by Stauffer and Weisbuch in 1992 to describe the evolution of the immune repertoire and present new results about its dynamical behavior. Ten years later this model, which is based on the ideas of the immune network as proposed by Jerne, has been able to describe a multi-connected network and could be used to reproduce immunization and aging experiments performed with mice. The immunization protocol is simulated by introducing small and large perturbations (damages), and in this work we discuss the role of both. Besides its biological implications, the physical aspects of the complex dynamics of this network is very interesting per se. In a very recent paper we studied the aging effects by using auto-correlation functions, and the results obtained apparently indicated that the small perturbations would be more important than the large ones, since their cumulative effects may change the attractor of the dynamics. However our new results indicate that both types of perturbations are important. It is the cooperative effects between both that lead to the complex behavior which allows to reproduce experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.