Abstract

Simple prototypes for forced advection‐diffusion problems are known to produce passive tracer distributions that exhibit approximately exponential or stretched exponential tails. Having previously found an approximately exponential tail for the column integrated water vapor (CWV) distribution under high precipitation conditions, we conjectured that if such prototypes are relevant to more complex tropospheric tracer problems, we should find such tails for a wide set of tracers. Here it is shown that such tails are indeed ubiquitous in observed, model, and reanalysis data sets for a variety of tracers, either column integrated or averaged through a deep layer, including CO and CO2. The long tails in CWV are associated with vertical transport and can occur independent of a local precipitation sink. These non‐Gaussian distributions can have consequences for source attribution studies of anthropogenic tracers, and for mechanisms of precipitation extremes; the properties of the tails may help constrain model tracer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.