Abstract
Long-tailed unconventional class I myosin, Myosin 1E (MYO1E) and Myosin 1F (MYO1F) are motor proteins that use chemical energy from the hydrolysis of adenosine triphosphate (ATP) to produce mechanical work along the actin cytoskeleton. On the basis of their motor properties and structural features, myosins perform a variety of essential roles in physiological processes such as endocytosis, exocytosis, cell adhesion, and migration. The long tailed unconventional class I myosins are characterized by having a conserved motor head domain, which binds actin and hydrolyzes ATP, followed by a short neck with an isoleucine-glutamine (IQ) motif, which binds calmodulin and is sensitive to calcium, and a tail that contains a pleckstrin homology domain (PH), a tail homology 1 domain (TH1), wherein these domains allow membrane binding, a tail homology 2 domain (TH2), an ATP-insensitive actin-binding site domain, and a single Src homology 3 domain (SH3) susceptible to binding proline rich regions in other proteins. Therefore, these motor proteins are able to bind actin, plasma membrane, and other molecules (adaptor, kinases, membrane proteins) that contribute to their function, ranging from increasing membrane tension to molecular trafficking and cellular adhesion. MYO1E and MYO1F function in host self-defense, with a better defined role in innate immunity in cell migration and phagocytosis. Impairments of their function have been identified in patients suffering pathologies ranging from tumoral processes to kidney diseases. In this review, we summarize our current knowledge of specific features and functions of MYO1E and MYO1F in various tissues, as well as their involvement in disease.
Highlights
The myosin protein superfamily found in eukaryotic cells comprises at least 18 classes [1]
A striking feature of myosin motors is the great variability in the length of the neck region formed by the α-helix of IQ motifs, which are stabilized by binding light chains of the calmodulin family
Long-tailed unconventional class I myosins are involved in several physiological roles from endocytosis to cell migration, and these must be finely regulated to avoid pathology
Summary
The myosin protein superfamily found in eukaryotic cells comprises at least 18 classes [1]. Using the “highways and local roads” analogy, microtubules serve as long range highways for organelle transport powered by the motor proteins kinesin or dyneins (opposite direction), whereas F-actin serves as short range roads managed by unconventional myosins [9]. These myosins can play roles other than cellular trafficking, such as exocytosis, endocytosis, signal transduction, cell adhesion, and cell migration. A striking feature of myosin motors is the great variability in the length of the neck region formed by the α-helix of IQ motifs, which are stabilized by binding light chains of the calmodulin family. We will focus on class I unconventional myosins, regarding our current knowledge of how long-tailed forms function and are involved in disease
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.