Abstract

We present a continuous time random walk model for the scale-invariant transport found in a self-organized critical rice pile [Christensen et al., Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that the dynamics of the experiment can be explained in terms of L\'evy flights for the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular automaton model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call