Abstract

Structural health monitoring (SHM) systems have been widely applied in long-span bridges and a large amount of SHM data is continually collected. The harsh environment of sensors installed at structures causes multiple types of anomalies such as outlier, minor, missing, trend, drift, and break in the SHM data, which seriously hinders the further analysis of SHM data. In order to achieve anomaly detection from a large amount of SHM data, this paper proposes a long-short term memory (LSTM) network-based anomaly detection method. Firstly, the proposed method reduces the workload for preparing training sets. Secondly, the purpose of real-time anomaly detection can be met. Thirdly, the problem of high alarm rate can be avoided by utilizing double thresholds. To validate the effectiveness of the proposed method, a case study of finite element model simulation is firstly introduced, which illustrates the detailed implementation process. Finally, acceleration data from the SHM system of a long-span suspension bridge located in Jiangyin, China is employed. The results show that the proposed method can detect anomaly with high accuracy and identify abnormal accidents such as a ship collision quickly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.