Abstract

Background Alternative splicing (AS) plays a crucial role in regulating the progression of colorectal cancer (CRC), but its distribution remains to be explored. Here, we aim to investigate the genes edited by AS which show differential expression in patients with mismatch repair deficiency (dMMR)/microsatellite instability (MSI). Materials and Methods We applied long-read nanopore sequencing to determine the mRNA profiles and screen AS genes using Oxford Nanopore Technologies (ONT) method in ten paired CRC tissues. CRC tissue and plasma samples were used to validate the differential genes with AS using real-time fluorescent quantitative PCR, immunohistochemistry, and enzyme-linked immunosorbent assay. Results ONT sequencing identified 404 genes were downregulated, and 348 genes were upregulated in MSI cancer tissues compared with microsatellite stability (MSS) cancer tissues. In total, 6,200 AS events were identified in 2,728 mRNA transcripts. WGCNA revealed dMMR/MSI-correlated gene modules, including INHBA and RPL22L1, which were upregulated; conversely, HMGCS2 was downregulated in MSI cancer. Overexpression of RPL22L1, INHBA, and CAPZA1 was further confirmed in CRC tissues. INHBA was found to be associated with tumor lymphatic metastasis. Importantly, the levels of INHBA in CRC plasma were significantly increased compared with those in noncancer plasma. INHBA showed a higher level in dMMR/MSI CRC than in MSS CRC, indicating that INHBA is a useful biomarker. Conclusion Our results showed that ONT-identified genes provide a pool to explore AS-associated markers for dMMR/MSI CRC. We demonstrated INHBA as a promising signature for clinical application in predicting tumor lymphatic metastasis and screening dMMR/MSI candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.