Abstract
We report on a minimal system to mimic intracellular transport of membrane-bounded, vesicular cargo. In a cell-free assay, purified kinesin-1 motor proteins were directly anchored to the membrane of giant unilamellar vesicles, and their movement studied along two-dimensional microtubule networks. Motion-tracking of vesicles with diameters of 1-3 μm revealed traveling distances up to the millimeter range. The transport velocities were identical to velocities of cargo-free motors. Using total internal reflection fluorescence (TIRF) microscopy, we were able to estimate the number of GFP-labeled motors involved in the transport of a single vesicle. We found that the vesicles were transported by the cooperative activity of typically 5-10 motor molecules. The presented assay is expected to open up further applications in the field of synthetic biology, aiming at the in vitro reconstitution of sub-cellular multi-motor transport systems. It may also find applications in bionanotechnology, where the controlled long-range transport of artificial cargo is a promising means to advance current lab-on-a-chip systems.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.