Abstract

In this paper, the supermodes, long-range surface plasmon polaritons (LRSPPs), have been theoretically studied to enhance the optical coupling of AlGaN/GaN quantum well infrared photodetector (QWIP) based on gold–Si3N4 hybrid architecture. The electromagnetic field, energy flow, and current density are analyzed by finite element method (FEM). In time domain, the electric field component E z and current density J z perpendicular to the multi-quantum wells (MQWs) are symmetric and asymmetric distributions over the gold grating, respectively, which precisely prove the existence of LRSPPs. The averaged |E z |2 across the whole quantum well region reaches 1.51 (V/m)2 when the electric field intensity (|E 0|2) of normal incidence is 1 (V/m)2 at 4.65 μm. Extraordinarily low loss of the LRSPPs results in a coupling efficiency enhancement ratio of 2.23 in AlGaN/GaN QWIP compared with that obtained via bare gold grating with different polarized sources, exhibiting great potential for application in the focal plane arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.