Abstract
The recent discovery of superconductivity in the Ruddlesden-Popper bilayer nickelate, specifically La3Ni2O7, has generated significant interest in the exploration of high-temperature superconductivity within this material family. In this study, we present the crystallographic and electrical resistivity properties of two distinct Ruddlesden-Popper nickelates: the bilayer La3Ni2O7 (referred to as 2222-phase) and a previously uncharacterized phase, La3Ni2O7 (1313-phase). The 2222-phase is characterized by a pseudo F-centered orthorhombic lattice, featuring bilayer perovskite [LaNiO3] layers interspaced by rock salt [LaO] layers, forming a repeated ...2222... sequence. Intriguingly, the 1313-phase, which displays semiconducting properties, crystallizes in the Cmmm space group and exhibits a pronounced predilection for a C-centered orthorhombic lattice. Within this structure, the perovskite [LaNiO3] layers exhibit a distinctive long-range ordered arrangement, alternating between single- and trilayer configurations, resulting in a ...1313... sequence. This report contributes to novel insights into the crystallography and the structure-property relationship of Ruddlesden-Popper nickelates, paving the way for further investigations into their unique physical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.