Abstract
Atomically thin transition metal dichalcogenides (TMDs), a subclass of two-dimensional (2D) layered materials, have numerous fascinating properties that make them a promising platform for photonic and optoelectronic devices. In particular, excited state transport by TMDs is important in energy harvesting and photonic switching; however, long-range transport in TMDs is challenging due to the lack of availability of large area films. Whereas most previous studies have focused on small, exfoliated monolayer flakes, in this work we demonstrate metal-organic chemical vapor deposition grown centimeter-scale monolayers of WS2 that support polariton propagation lengths of up to 60 μm. The polaritons form through the strong coupling of excitons with Bloch surface waves (BSWs) supported by all-dielectric photonic structures. We observe that the propagation length increases with the number of dielectric pairs due to the increased quality factor of the supporting distributed Bragg reflector. Furthermore, a longer propagation length is observed as the guided or BSW content of the polariton is increased. Our results provide a practical approach for the systematic engineering of long-range energy transport mediated by exciton-polaritons in TMD layers. Along with the accessibility of large area TMDs, our work enables applications for practical TMD-based polaritonic devices that operate at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.