Abstract
Long-range diffusive effects are included in a discrete Hindmarsh–Rose neural network. Their impact on the emergence of nonlinear patterns is investigated via the modulational instability. The whole system is first shown to fully reduce to a single nonlinear differential-difference equation, which has plane wave solutions. The stability of such solutions is investigated and regions of instability are found to be importantly influenced by long-range parameters. The analytical results are confirmed through direct numerical simulations, where scattered and chaotic patterns illustrate the long-range effect. Synchronized states are described by quasi-periodic patterns for nearest-neighbor coupling. The external stimulus is also shown to efficiently control strong long-range effects via more regular spatiotemporal patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.