Abstract
While it is often assumed that the orbital response is suppressed and short ranged due to strong crystal field potential and orbital quenching, we show that the orbital response can be remarkably long ranged in ferromagnets. In a bilayer consisting of a nonmagnet and a ferromagnet, spin injection from the interface results in spin accumulation and torque in the ferromagnet, which rapidly oscillate and decay by spin dephasing. In contrast, even when an external electric field is applied only on the nonmagnet, we find substantially long-ranged induced orbital angular momentum in the ferromagnet, which can go far beyond the spin dephasing length. This unusual feature is attributed to nearly degenerate orbital characters imposed by the crystal symmetry, which form hotspots for the intrinsic orbital response. Because only the states near the hotspots contribute dominantly, the induced orbital angular momentum does not exhibit destructive interference among states with different momentum as in the case of the spin dephasing. This gives rise to a distinct type of orbital torque on the magnetization, increasing with the thickness of the ferromagnet. Such behavior may serve as critical long-sought evidence of orbital transport to be directly tested in experiments. Our findings open the possibility of using long-range orbital response in orbitronic device applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.