Abstract

By using high-level ab initio methods, we examine the nature of bonding between Rydberg electrons hosted by two four-coordinate nitrogen centers embedded in a hydrocarbon scaffold. The electronic structure of these species resembles that of diradicals, yet the diffuse nature of the orbitals hosting the unpaired electrons results in unusual features. The unpaired Rydberg electrons exhibit long-range bonding interactions, leading to stabilization of the singlet state (relative to the triplet) and a reduced number of effectively unpaired electrons. However, thermochemical gains due to through-space bonding are offset by strong Coulomb repulsion between positively charged nitrogen cores. The kinetic stability of these Rydberg diradicals may be controlled by a judicious choice of the molecular scaffold, suggesting possible strategies for their experimental characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call