Abstract
A theoretical study of the mechanism of magnon transfer through a ferromagnetic chain (F) has been carried out from magnetically ordered contact A to similar contact B (AFB system). The regime of spin excitation transport is considered, when the inner section of the chain with identical paramagnetic units acts as a bridge for magnon transfer and thereby is poorly populated by magnons. In this case, the magnon transfer can be carried out by sequential hopping the localized magnon across all units of the chain or/and tunneling the magnon between the terminal units of the chain by a “superexchange” mechanism. The latter involves in the tunneling route the virtual delocalized magnons. The analytical dependence of the corresponding transfer rates on the number of paramagnetic bridge units is found and the magnon analog of the Seebeck and Peltier effects is predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.