Abstract
We investigate the effect of structural deformation on the magnetic properties of orthorhombic CePdAl3 in relation to its tetragonal polymorph. Utilizing x-ray and neutron diffraction, we establish that the crystal structure has the Cmcm space-group symmetry and exhibits pseudotetragonal twinning. According to density functional calculations, the tetragonal-orthorhombic deformation mechanism has its grounds in the relatively small free enthalpy difference between the polymorphs, allowing either phase to be quenched, and fully accounts for the twinned microstructure of the orthorhombic phase. Neutron diffraction measurements show that orthorhombic CePdAl3 establishes long-range magnetic order below TN=5.29(5) K characterized by a collinear, antiferromagnetic arrangement of magnetic moments. Magnetic anisotropies of orthorhombic CePdAl3 arise from strong spin-orbit coupling as evidenced by the crystal-field splitting of the 4f multiplet, fully characterised with neutron spectroscopy. We discuss the potential mechanism of frustration posed by antiferromagnetic interactions between nearest neighbors in the tetragonal phase, which hinders the formation of long-range magnetic order in tetragonal CePdAl3. We propose that orthorhombic deformation releases the frustration and allows for long-range magnetic order. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.