Abstract

Riboswitches are widespread RNA motifs that regulate gene expression in response to fluctuating metabolite concentrations. Known primarily from bacteria, riboswitches couple specific ligand binding and changes in RNA structure to mRNA expression in cis. Crystal structures of the ligand binding domains of most of the phylogenetically widespread classes of riboswitches, each specific to a particular metabolite or ion, are now available. Thus, the bound states-one end point-have been thoroughly characterized, but the unbound states have been more elusive. Consequently, it is less clear how the unbound, sensing riboswitch refolds into the ligand binding-induced output state. The ligand recognition mechanisms of riboswitches are diverse, but we find that they share a common structural strategy in positioning their binding sites at the point of the RNA three-dimensional fold where the residues farthest from one another in sequence meet. We review how riboswitch folds adhere to this fundamental strategy and propose future research directions for understanding and harnessing their ability to specifically control gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call