Abstract

Actualizing efficient and sustainable environmental catalysis is essential in global water pollution control. The single-atom Fenton-like process, as a promising technique, suffers from reducing potential environmental impacts of single-atom catalysts (SACs) synthesis and modulating functionalized species beyond the first coordination shell. Herein, we devised a high-performance SAC possessing impressive Fenton-like reactivity and extended stability by constructing abundant intrinsic topological defects within carbon planes anchored with Fe−N4 sites. Coupling atomic Fe−N4 moieties and adjacent intrinsic defects provides potent synergistic interaction. Density functional theory calculations reveal that the intrinsic defects optimize the d-band electronic structure of neighboring Fe centers through long-range interactions, consequently boosting the intrinsic activity of Fe−N4 sites. Life cycle assessment and long-term steady operation at the device level indicate promising industrial-scale treatment capability for actual wastewater. This work emphasizes the feasibility of synergistic defect engineering for refining single-atom Fenton-like chemistry and inspires rational materials design toward sustainable environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.