Abstract

The nature of saltatory conduction in myelinated axon described by equivalent circuit and circuit theory is still contentious. Recent experimental observations of action potentials transmitting through disjointed nerve fibers strongly suggest an electromagnetic wave propagation mechanism of the nerve signals. In this paper, we employ the electromagnetic wave model of the myelinated axon to describe action potential signal propagation. We use the experimental frequency-dependent conductivity and permittivity values of the nerve tissues in order to reliably calculate the electromagnetic modes by using electromagnetic mode solvers. We find that the electromagnetic waves above 10 kHz can be well confined in extracellular fluid–myelin sheath–intracellular fluid waveguide and propagate a distance of 7 mm without much attenuation. Our study may serve as one of the fundamental researches for the better understanding of the nervous system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.