Abstract

Long range correlation analysis and charge conductivity investigation are applied to sequences in 16 chromosomes in the Saccharomyces cerevisiae genome. DNA sequence data are analyzed via Hurst’s analysis and Detrended Fluctuation Analysis (DFA) analysis. Super diffusive nature of mapping sequences are evident with the measured Hurst exponent H to be around the value of 0.60 for all sequences in the 16 chromosomes. The DFA result is consistent with the result from the Hurst analysis. Tight binding models are applied for the investigation of charge conduction through DNA sequences. The overall averaged transmission coefficients, 〈 T N 〉 a v , calculated from sixteen chromosomes are shown to be significantly different from values calculated from random as well as periodic sequences. Sequences from the S. cerevisiae genome promise better charge conduction ability than random sequences. Finally, delocalized electronic wave function patterns are also shown through calculations using the tight binging model. Slightly delocalized electronic wavefunctions are seen on sequences in sixteen chromosomes, as compared with those obtained from random sequences on the same eigenenergies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.