Abstract

AbstractCO2reduction is a highly attractive route to transform CO2into useful feedstocks, of which C2products are more desired than C1, yet face high kinetic barriers of C−C electrocoupling. Here, the engineering of pore‐enabled local confinement reaction environments is reported for tuning the enrichment of surface‐adsorbed oxygen‐relevant species and the establishment of their pronounced benefits in promoting C−C coupling over oxide‐derived Cu‐based catalysts. A new approach of utilizing the microphase separation of a block copolymer is developed to fabricate bicontinuous mesoporous CuO nanofibers (CuO‐BPNF). The enhanced confinement from long‐range mesochannels enables the adsorption of OHad/Oadon the Cu surface at a wide negative potential range of −0.7 – −1.3 V in CO2reduction, which cannot be achieved over conventional deficient and short‐range pores. Constant‐potential DFT calculations reveal that the surface‐bound oxygen species weakens *CO affinity with the Cu (111) surface and lowers the kinetic barriers for both *CO−CO dimerization and *CO hydrogenation to enable *CO−CHO coupling. Accordingly, a CO2‐to‐C2Faradaic efficiency of 74.7% over CuO‐BPNF is shown, significantly larger than counterparts with conventional pores. This work offers a general design principle of confinement engineering to manage the adsorption of reactive species for steering reaction pathways in interfacial catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.