Abstract

AbstractNi‐rich layered oxides are one of the most attractive cathode materials in high‐energy‐density lithium‐ion batteries, their degradation mechanisms are still not completely elucidated. Herein, we report a strong dependence of degradation pathways on the long‐range cationic disordering of Co‐free Ni‐rich Li1−m(Ni0.94Al0.06)1+mO2 (NA). Interestingly, a disordered layered phase with lattice mismatch can be easily formed in the near‐surface region of NA particles with very low cation disorder (NA‐LCD, m≤0.06) over electrochemical cycling, while the layered structure is basically maintained in the core of particles forming a “core–shell” structure. Such surface reconstruction triggers a rapid capacity decay during the first 100 cycles between 2.7 and 4.3 V at 1 C or 3 C. On the contrary, the local lattice distortions are gradually accumulated throughout the whole NA particles with higher degrees of cation disorder (NA‐HCD, 0.06≤m≤0.15) that lead to a slow capacity decay upon cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call