Abstract

Recent observations of charged colloidal particles trapped at the air-water interface revealed long-range interparticle attractive forces, not accounted for by the standard theories of colloidal interactions. We propose a mechanism for attraction which is based on nonuniform wetting causing an irregular shape of the particle meniscus. The excess water surface area created by these distortions can be minimized when two adjacent particles assume an optimum relative orientation and distance. Typically, for spheres with diameter of 1 &mgr;m at an interparticle distance of 2 &mgr;m, deviations from the ideal contact line by as little as 50 nm result in an interaction energy of the order of 10(4)kT. Roughness-induced capillarity explains the experimental findings, including the cluster dissolution caused by addition of detergent to the subphase and the formation of linear aggregates. This kind of interaction should also be of importance in particle-stabilized foams and emulsions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.