Abstract

The low-energy electronic dispersion of graphene is extremely sensitive to the nearest layer interaction and thus the stacking sequence. Here, we report a method to examine the effect of stacking misorientation in bilayer graphene by transferring chemical vapor deposited (CVD) graphene onto monolithic graphene epitaxially grown on silicon carbide (SiC) (0001). The resulting hybrid bilayer graphene displays long-range Moir\'e diffraction patterns having various misorientations even as it exhibits electron reflectivity spectra nearly identical to epitaxial bilayer graphene grown directly on SiC. These varying twist angles affect the 2D (G')-band shape of the Raman spectrum, indicating regions of both a monolayer-like single \ensuremath{\pi} state and Bernal-like split \ensuremath{\pi} states brought about by the differing interlayer interactions. This hybrid bilayer graphene fabricated via a transfer process therefore offers a way to systematically study the electronic properties of bilayer graphene films as a function of stacking misorientation angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.