Abstract

In this Letter, we give a new, to the best of our knowledge, perspective on the origin of light coherence in lasers. We demonstrate that a coherence appears below the lasing threshold and manifests itself as long-range correlations between polarizations of active medium atoms. These correlations contribute to the formation of a collective state of atomic polarizations and electromagnetic field modes, which interacts more effectively with the active medium and lases when pumping exceeds the lasing threshold. We demonstrate that inhibiting these atomic correlations leads to the destruction of the collective state and suppression of lasing. The obtained results open up new ways to control coherence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.