Abstract

The exchange energy, i.e., the splitting ΔE between gerade and ungerade states in the hydrogen molecule, has proven very difficult in numerical calculation at large internuclear distances R, while the known results are sparse and highly inaccurate. On the other hand, there are conflicting analytical results in the literature concerning its asymptotics. In this work, we develop a flexible and efficient numerical approach using explicitly correlated exponential functions and demonstrate highly accurate exchange energies for internuclear distances as large as 57.5 a.u. This approach may find further applications in calculations of inter-atomic interactions. In particular, our results support the asymptotics form ΔE ∼ R5/2e-2R, but with the leading coefficient being 2σ away from the analytically derived value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.