Abstract
Yttrium-doped barium zirconate (BZY) is the most promising candidate for proton-conducting ceramics and has been extensively studied in recent years. The detailed features of the crystal structure, both short-range and long-range, as well as the crystal chemistry driving the doping process, are largely unknown. We use very high resolution X-ray diffraction (HR-XRD) to resolve the crystal structure, which is very slightly tetragonally distorted in BZY, while the local environment around Zr4+ and Y3+ is probed with extended X-ray absorption fine structure (EXAFS), and the symmetry and vibrations are investigated by using Raman spectroscopy. It is found that barium zirconate shows some degree of local deviation from the cubic arystotype even if undoped, which upon substitution by the perceptibly larger Y3+, playing the role of a rigid inclusion, is further increased. This distortion is one limiting factor concerning the Y3+ solubility. The effects are correlated to the proton conduction properties of BZY.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.