Abstract
Single-photon light detection and ranging (LiDAR) has emerged as a strong candidate technology for active imaging applications. In particular, the single-photon sensitivity and picosecond timing resolution permits high-precision three-dimensional (3D) imaging capability through atmospheric obscurants including fog, haze and smoke. Here we demonstrate an array-based single-photon LiDAR system, which is capable of performing 3D imaging in atmospheric obscurant over long ranges. By adopting the optical optimization of system and the photon-efficient imaging algorithm, we acquire depth and intensity images through dense fog equivalent to 2.74 attenuation lengths at distances of 13.4 km and 20.0 km. Furthermore, we demonstrate real-time 3D imaging for moving targets at 20 frames per second in mist weather conditions over 10.5 km. The results indicate great potential for practical applications of vehicle navigation and target recognition in challenging weather.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.