Abstract

Long-range (1)H-(15)N heteronuclear shift correlation experiments at natural abundance are becoming more routinely utilized in the characterization of unknown chemical structures from a diverse range of sources including natural products and pharmaceuticals. Apart from the inherent challenges of the low gyromagnetic ratio and natural abundance of (15)N, investigators are also occasionally hampered by having to deal with the wide spectral range inherent to various nitrogen functional groups, which can exceed 500 ppm. Earlier triple resonance cryoprobe designs typically provided 90° (15)N pulses in the range of 35-40 µs, which did not allow the uniform excitation of wide F(1) spectral ranges for (1)H-(15)N GHMBC spectra. We report the results obtained with a newly designed Bruker 600 MHz triple resonance TCI Micro CryoProbe™ using methyl orange as a model compound, in which the (15)N resonances are separated by >450 ppm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.