Abstract

The promotion of intersystem crossing (ISC) is critical for achieving a high-efficiency long-persistent luminescence (LPL) from organic materials. However, the use of a transition-metal complex for LPL materials has not been explored because it can also shorten the emission lifetime by accelerating the phosphorescence decay. Here, we report a new class of LPL materials by doping a monovalent Au-carbene complex into a boron-embedded molecular host. The donor-acceptor systems exhibit photoluminescence with both high efficiencies (>57 %) and long lifetimes (ca. 40 ms) at room temperature. It is revealed that the Au atom promotes the population of low-lying triplet excited states of the host aggregate (T1 *) which can be converted into the charge-transfer (CT) state, thereby resulting in afterglow luminescence. Moreover, the use of a chirality unit on the guest molecule results in the LPL being circularly polarized. This work illustrates that transition-metal complexes can be used for developing organic afterglow systems by exquisite control over the excited state mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.