Abstract

Long-period hydromagnetic waves can be excited by the velocity shear instability in the magnetospheric boundary layers, where the penetrated bulk flow of the solar wind comprises a fairly strong velocity shear. Model spaces of the boundary layers are considered to estimate amplification rates on the HM waves in the low-latitude flank-side and in the dayside high-latitude and mantle-side boundary layers, where the ambient magnetic field is assumed to be perpendicular and parallel to the bulk flow of the solar wind, respectively. Wave characteristics of the HM waves are also investigated for the k-vector almost normal to the magnetopause. The localized HM waves in the Pc 3–4, Pc 4–5 and Pc 6 frequency ranges, of which group velocities are mostly parallel to the plane in the ambient magnetic field and the bulk flow directions, i.e., parallel to the magnetopause, are sufficiently amplified in the dayside low- and high-latitude, in the low-latitude flank-side, and in the mantle-side boundary layers, respectively. A left-handed toroidal (transverse) and a right-handed poloidal (compressional) mode of long-period (T ≳ 120 s)Ω A -wave are generated in the dawn- and the duskflank boundary layers, respectively, where the k-vector of Alfvénic signals was assumed to be almost in the Archemedean spiral direction. The localized compressional HM waves in the Pc 3–4 range indicate both lefthanded and right-handed polarizations in the dayside boundary layer, which are functions of the k-vector of the waves and the sense of the velocity shear. The variance directions of perturbation fields of the HM waves in the magnetospheric boundary layers tend to be nearly parallel to the magnetopause. These localized HM waves can propagate into the high-latitude ionosphere. We conclude that the localized HM waves driven by the velocity shear instability in the magnetospheric boundary layers are the most probable source of the daytime Pc 3–5 magnetic pulsations in the outer magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.