Abstract
In mode-division-multiplexing systems, multi-input multi-output (MIMO) equalization is used to compensate for linear impairments, including modal dispersion (MD) and modal crosstalk. The MIMO equalizer memory length depends on the group delay (GD) spread arising from MD. The GD spread arising from MD can be significantly reduced by introducing strong mode coupling via mode scramblers. We study the design of such mode scramblers implemented as long-period multimode fiber gratings for systems using D = 12 modes (six spatial modes). By optimizing the grating chirp function, we minimize the mode-dependent loss (MDL) of the grating while ensuring full intergroup mode coupling. We find a design yielding MDL and mode-averaged loss in the C band not exceeding 0.36 and 0.45 dB, respectively. We also verify the effect of such mode scramblers on the GD scaling of a long-haul system, demonstrating that the scramblers reduce the scaling of GD spread with length from a linear to a square-root dependence, as expected in the strong coupling regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.