Abstract

Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.