Abstract

Pressure fluctuations caused by a strong ocean floor current are evident during most of an eighty-day-long record of very-low-frequency acoustic ambient noise measured by an instrument on the seafloor in the western Atlantic in the framework of the HEBBLE (High Energy Benthic Boundary Layer Experiment). The differential pressure gauges on the instrument produce useful measurements over a wide frequency band extending from 0.0005 to 16 Hz. The spectrum of current-induced pressure fluctuations is red with a power-law dependence on frequency with an exponent of -1.5. Turbulence in the ocean floor boundary layer is the source of these pressure fluctuations rather than the effects of flow around the transducers. This record of boundary-layer pressure fluctuations is used to predict the effect of seafloor currents on long-period seismograph measurements from the seafloor and from under the seafloor in boreholes.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.