Abstract

Long non-coding RNAs (lncRNAs) have been shown to play important regulatory role in certain type of cancers biology, including breast and lung cancers. However, the lncRNA expression in breast cancer combined with primary lung cancer remains unknown. In this study, databases of the Cancer Genome Atlas (TCGA) and the lncRNA profiler of contained candidate 192 lncRNAs were utilized. 11 lncRNAs were differentially expressed in breast cancer, 9 candidate lncRNAs were differentially expressed in lung cancer. In order to find the aberrant expression of lncRNAs in breast cancer combined with primary lung cancer, seven samples of primary breast cancer and lung cancer were studied for the expression of selected lncRNAs. The results showed that SNHG6 and NEAT1 were reversely expressed in breast cancer combined with primary lung cancer compared with primary breast or lung cancer. In addition, a significant correlation of lncRNAs was found in the patients whose age was above 56 in breast cancer. What's more, PVT1 expression was negatively correlated with the pathological stage, and the level of ER, PR, HER2, p53 in breast cancer. Furthermore, lncRNA expression did not have significant relationship with the 5-year survival of patients with breast cancer combined with primary lung cancer. The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer. Therefore, these lncRNAs are potential molecular indicators in the diagnosis and prognosis of cancer in the future.

Highlights

  • The human genome is the blueprint of the encrypted codes for protein synthesis

  • The findings revealed that PVT1, SNHG6, NEAT1 may serve as a prognostic marker for breast cancer combined with primary lung cancer

  • The results showed that Long non-coding RNAs (lncRNAs) AFAPA-AS1, aHIF, BDNF-AS, HYMAI, UCA1, kucg 1, MALAT1 were differentially expressed in breast cancer tissues

Read more

Summary

Introduction

The human genome is the blueprint of the encrypted codes for protein synthesis. Transcripts from the whole genome are scarcely (only about 2%) used for actual protein synthesis, most of transcripts are non-coding RNAs including microRNAs and long non-coding RNAs (lncRNAs) [1]. Considered as “transcription noise”, lncRNAs have been reported to play important roles in cellular functioning and tumorigenesis through various mechanisms, including post-translational modification, post-translational inhibition and chromatin remodeling, etc [3]. The functions and molecular mechanism of lncRNAs is not clear. Neither is it known whether lncRNAs can serve as biomarkers for cancer diagnosis and prognosis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call