Abstract

What is highlighted in this study refers to the role and molecular mechanism of long noncoding RNA (lncRNA) X-inactive specific transcript(XIST) in cells with insulin resistance (IR). In this study, LX-2 cells were applied to establish IR model in vitro. The expressions of lncRNA XIST, phosphoenolpyruvate carboxykinase(PEPCK,) and glucose-6-phosphatase (G6Pase) were quantified by quantitativereverse transcription polymerase chain reaction. The 2-deoxy-d-glucose-6-phosphate (2-DG6P) level was detected utilizing 2-deoxy-d-glucose (2-DG) uptake measurement kit. Western blot was adopted to measure the protein expressions of insulin-like growth factor-1 receptor (IGF-1R), G6Pase, PEPCK, and phosphatidylinositol 3-kinase(PI3K)/Akt pathway-related genes. StarBase was used to predict the targeting relationship between lncRNA XIST or IGF-1R with miR-182-5p, the results of which were verified by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation assays. Rescue experiments were conducted to investigate the effect of miR-182-5p on IR cells. Next, low-expressed lncRNA XIST and high-expressed miR-182-5p were observed in IR cells. Upregulation of lncRNA XIST increased IGF-1R and 2-DG6P levels, decreased G6Pase and PEPCK expressions, and promoted PI3K/Akt pathway activation in IR cells. LncRNA XIST sponged miR-182-5p which targeted IGF-1R. MiR-182-5p mimic reversed the above effects of lncRNA XIST overexpression on IR cells. In conclusion, lncRNA XIST/miR-182-5p axis alleviates hepatic IR in vitro via IGF-1R/PI3K/Akt signaling pathway, which could be the promising therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call