Abstract

Emerging data have proposed that the aberrant level of long noncoding RNAs (lncRNA) is related to the onset and progression of cancer. Among them, lncRNA SOX21-AS1 was shown to upregulate and seem to be a novel oncogene in various cancer, including ovarian cancer, lung cancer, breast cancer, pancreatic cancer, osteosarcoma, and melanoma. Available data indicated that SRY-box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1) mostly acts as a competing endogenous RNA (ceRNA) to inhibit the level of its target microRNAs (miRNAs), leading to upregulation of their targets. In addition, SOX21-AS1 is engaged in various signaling pathways like transforming growth factor-β (TGF-β) signaling, Wnt signaling, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling. Moreover, this lncRNA was revealed to be correlated with the clinicopathological features of affected patients. SOX21-AS1 was also proved to enhance the resistance of ovarian cancer cells to cisplatin chemotherapy. SOX21-AS1 is markedly associated with poor prognosis and low survival of patients, proposing that it may be a prognostic and diagnostic biomarker in cancer. Overexpression of SOX21-AS1 is related to various cancer-related pathways, like epithelial mesenchymal transition (EMT), invasion, migration, apoptosis, and cell cycle arrest. In this work, we aimed to discuss the biogenesis, function, and underlying molecular mechanism of SOX21-AS1 in cancer progression as well as its potential as a prognostic and diagnostic biomarker in human cancers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call