Abstract

BackgroundParkinson’s disease (PD) is a prevalent neurodegenerative disease. Long noncoding RNA small molecule RNA host gene 1 (SNHG1) has been reported to play critical roles in Parkinson’s disease (PD) progression. The study aimed to further elucidate the mechanism of SNHG1 in PD pathogenesis.MethodsThe levels of SNHG1, miR-125b-5p and mitogen-activated protein kinase 1 (MAPK1) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) or Western blot. Cell viability and apoptosis were evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The activity of Caspase-3 or Caspase-9 was measured using a Caspase-3 or Caspase-9 Assay Kit. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, lactic dehydrogenase (LDH) activity, reactive oxygen species (ROS) generation and superoxide dismutase (SOD) activity were gauged by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to identify the relationship between miR-125b-5p and SNHG1 or MAPK1. The MPTP-induced PD mouse was used as an in vivo model of PD and MPP+-treated SK-N-SH and MN9D cells were used as in vitro models of PD.ResultsSNHG1 and MAPK1 were significantly up-regulated while miR-125b-5p was down-regulated in the MPTP-induced PD mouse model and MPP+-induced PD cell models. SNHG1 silence or miR-125b-5p overexpression protected against MPP+-evoked apoptosis, oxidative stress and inflammation in SK-N-SH and MN9D cells. Moreover, SNHG1 acted as a molecular sponge of miR-125b-5p, and the protective impact of SNHG1 silence on MPP+-evoked cell damage was reversed by miR-125b-5p inhibition. Furthermore, MAPK1 was a functional target of miR-125b-5p and its overexpression attenuated the effects of miR-125b-5p restoration in MPP+-triggered cell injury. In addition, the behavioral changes in MPTP-induced PD mouse in vivo model were relieved by SNHG1 silence.ConclusionSNHG1 knockdown exerted neuroprotective effects in MPP+-evoked cytotoxicity through regulating the miR-125b-5p/MAPK1 axis both in human and mouse PD cell models, highlighting a possible target for PD therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call