Abstract

ObjectivesThis article aims to elucidate the role of Long non-coding RNA SLC7A11 antisense RNA1 (SLC7A11-AS1) in oral squamous cell carcinoma, which are expected to be useful for the oral squamous cell carcinoma diagnosis and treatment. DesignSLC7A11-AS1 expression was detected by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) in oral squamous cell carcinoma cell lines. Cellular localization of SLC7A11-AS1C was detected by fluorescence in situ hybridization (FISH) assays and subcellular fractionation assay. Biological functions of SLC7A11-AS1 were explored by 3-(4,5-dimethyl-2-thiazolyl)− 2,5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), wounding healing, and transwell invasion assays in vitro, as well as mice xenograft experiments and metastasis assays in vivo. RNA pull-down, RNA immunoprecipitation, co-immunoprecipitation, ubiquitination assays, and rescue experiments were performed to determine the molecular mechanism of SLC7A11-AS1 in oral squamous cell carcinoma. ResultsSLC7A11-AS1 is overexpressed in oral cancer tissues and cell lines. Functionally, knockdown of SLC7A11-AS1 reduced the proliferation, migration, and invasion of oral squamous cell carcinoma cells in vitro and inhibited tumor growth as well as metastasis in vivo. Mechanistically, SLC7A11-AS1 impeded the interaction between K-homology type splicing regulatory protein (KHSRP) and kelch-like 12 (KLHL12), maintaining the stability of KHSRP by restraining KHSRP degradation through the ubiquitination-proteasome pathway. Furthermore, KHSRP overexpression recovered the malignant behaviors inhibited by SLC7A11-AS1 knockdown in oral cancer cells. ConclusionSLC7A11-AS1 promoted oral squamous cell carcinoma development by interacting with KHSRP and maintaining KHSRP stability by preventing its degradation via the ubiquitination-proteasome pathway. Thus, SLC7A11-AS1 is a potential therapeutic target for oral cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.